
Sam Zhang Follow

Sam is a software engineer and a Data Science for Social Good Fellow. https://sam.zhang.fyi.
Jan 22 · 7 min read

How OpenCounter designed a use code
search engine for local governments
Consider the local businesses in your neighborhood: co�ee shops, yoga

studios, salons, gyms.

When entrepreneurs come to City Hall to open a new business, they

will immediately learn that “yoga studio” is not an o�cial term. City

sta� can usually make sense of their descriptions, and translate them

into the o�cial terminology of the zoning code, but this process is

based on years of experience and deep familiarity with the regulations.

Automating the process in software reveals how complicated the

translations really are, and leads to challenging computer science

problems related to semantics and search.

A quick primer on zoning and land use
Every city employs a unique set of land uses, which are descriptions of

business activity that help to determine where businesses are allowed

to operate. We refer to the classi�cations as land use codes, or just use

codes.

Although there are some similarities that most bodies of land use codes

share, there is no standard or requirement for their structure. Across

jurisdictions, there will be di�erent numbers of land uses, di�erent

names for similar uses, di�erent categorizations for the uses, and uses

will be speci�ed at di�erent levels of detail.

“Yoga,” for instance, is usually grouped under “Commercial Services”

and can be called “Personal Instruction,” “Small Indoor Recreation,” or

“Group Fitness Facility.” In contrast, gyms can be grouped under either

“Commercial, Services” or even “Recreation, Public Assembly,” with the

actual use as “Recreation.”

Cafés are often grouped under “Commercial, Eating and Drinking

Establishment,” but depending on the local code, can be further

https://blog.opencounter.com/@shimian.zhang?source=post_header_lockup
https://blog.opencounter.com/@shimian.zhang?source=post_header_lockup

categorized as a “Limited Service Eating and Drinking Establishment”

(meaning that no table service is provided).

Salons are often grouped with tailors, laundry shops, and sometimes

even tattoo parlors in a land use called “Personal Services”, under the

umbrella of “Commercial, Services.”

These technical terms are not always intuitive for people new to the

process, but the choice of land use code can have a signi�cant impact

on where the business is allowed, meaning that choosing the right

option is a crucial step in the overall permitting process.

. . .

At OpenCounter we’re always trying to make interacting with local

government as seamless as possible. This is why when someone comes

to OpenCounter to check their zoning or research permits and fees for

their business, we’re able to replicate the conversations that happen at

the counter by matching common business terms to land uses de�ned

by the City. If cities have de�nitions for uses, those are available to

users as well.

OpenCounter already has the ability to show the user a map of where

their use code is allowed. Now the process of �nding a use code is

simpli�ed too.

Over the last six months, over 90% of users found a use code through

the search without resorting to browsing the land use table.

How do we do this? We use a technique at the intersection of natural

language processing and machine learning called word embeddings to

generate a graph representation of all of the use codes across all of the

jurisdictions in OpenCounter, and use results from other jurisdictions to

inform any particular search. As OpenCounter grows and is able to

compile more uses and associate more words, this algorithm becomes

more accurate.

For example, when a user searches for “salon”, we �nd “Personal

Services” because “salon” has a short distance with words like “barber”,

“spa”, “beauty”, and “nail”, which our system has already associated

with “Personal Services”. For more details on the graph nature of the

search, see the technical explanation below.

Technical explanation
The motivation for constructing a use code graph on top of word

embeddings is threefold:

We are unable to make a single search engine that takes a query,

and maps onto a global taxonomy of uses, since jurisdictions have

slightly (and sometimes very) di�erent sets of use codes.

1.

A screenshot of the use code search page of https://business.sandiego.gov/

https://business.sandiego.gov/

We don’t want individual search engines for each jurisdiction,

because we want to exploit the similarities between the use code

sets to improve the quality of the search.

We want to minimize the amount of human annotation that needs

to go into the system. Therefore we want to fuzzy match on words

that OpenCounter hasn’t needed to explicitly associate with the

system. Word embeddings allow this. For example, we want

“pilates” to have a close association with any uses we know to be

related to “yoga”.

Embedding use codes

A word embedding is an embedding from a space where each word is

one dimension to a continuous vector space. We use an implementation

of word embeddings developed at Stanford called GloVe [1].

We use a pre-trained model of the top 400,000 thousand words from

English Wikipedia, projected onto a hypersphere.

At the beginning, we treat the use code as a bag of words [w₀, w₁, … ,

wₙ], which consists of the category, subcategory, name, and any

additional keywords associated with a given use code. We embed each

word individually from this bag of words to form a bag of vectors [p₀,

p₁, … , pₙ]. Then we combine these vectors into a single vector v⃗ using

tf-idf.

Use codes are allowed to have multiple vector representations, since a

use like “Commercial Administrative” can be the correct result for “law

�rm” as well as “advertising” or “software consulting” — words that

aren’t necessarily close in the vector space. This is accomplished by

giving each use code multiple “keyword sets” that append onto the

name of the use itself. For the sake of simplicity, the rest of this article

will treat use codes as the fundamental unit, rather than keyword sets.

Each use code is then represented as a tuple of (j, v⃗), j ∈ J, where v⃗ is

the vector representation of the use code, and J is the set of all

jurisdictions in OpenCounter, which are the clients in OpenCounter

such as San Diego and Salt Lake City. Thus a use may share the same

position in vector space with a use in a di�erent jurisdiction, but is

assumed to be unique within its own jurisdiction.

2.

3.

Each jurisdiction has its own set of use codes Uⱼ, which partition the set

of all use codes in OpenCounter U.

Here is a visual representation of U in two dimensions, created using t-

sne [2] and bokeh [3]:

Each use code is a point, and each color corresponds to a top-level use

category, such as “commercial”, “industrial”, or “residential”.

In the interactive version of the above plot, the user can move their

cursor across the points to watch how the use codes change:

https://sam.zhang.fyi/html/use-code-tsne.html. (Warning: 13MB html

�le)

Exploiting the use code graph

We use cosine distance as a distance metric D between use codes. The

user’s query vector will be denoted q⃗, and the jurisdiction of the user t.

t-sne representation of the vector space of uses

https://sam.zhang.fyi/html/use-code-tsne.html

We �nd that searching for the closest match within the target

jurisdiction from the query — minimizing { D(q⃗, u) | u ∈ Uₜ } —

performs poorly. The main reason this happens is because often a

particular jurisdiction simply doesn’t have detailed use codes. It is much

harder to match the query “o�ce” to “Commercial > General

Administrative” than it is to “Commercial > General Administrative >

O�ce”.

The quality increases when we rely on the underlying structure of the

graph to allow use codes to in�uence each other across jurisdictions.

The naive approach of minimizing { D(q⃗, u) | u ∈ Uₜ } can be viewed as

a minimization of the path ∑pᵢ, where pₙ ∈ Uₜ and p₀=q⃗ (this is the

great circle distance across the hypersphere between q⃗ and its nearest

point in Uₜ). Instead, to make use of the prior structure within the

graph, we minimize the length of each step argmin { D(pᵢ, pᵢ₊₁ | u ∈ U∧

u ∉ { p₀, p₁, … , pᵢ }) }. This opens up a potentially large search tree,

but we �nd it su�cient to perform only one step.

In other words, for each u ∈ U, we save the precomputed use s(u, j) =

argmin { D(u, uⱼ) | uⱼ ∈ Uⱼ, j ∈ J }. Then n=2, and p₂=s(p₁, t). This

creates a precomputed graph G of size |U| ×|J−1|, where for every

given use code, we �nd the closest use code in every other jurisdiction.

A hypothetical search

Suppose there is a city with a use code called “Commercial >

Administrative”, and that use code is the correct result for “o�ce”.

When the user types in “o�ce”, we �rst �nd the top N (say, 20) matches

across the entire system, across all jurisdictions. It would likely be a

group of use codes all similarly named to “Commercial > General

Administrative > O�ce”.

Then for each of those candidates for p₁, we look up s(p₁, t) within G,

and rank the results using a linear combination of D(q⃗, p₁) and D(p₁,

p₂).

This is essentially a form of query expansion, where we rely on the prior

knowledge of all of the use codes in OpenCounter to expand our query

from q⃗ to p₁. This is why adding as OpenCounter grows, and more use

codes are added to the system, the quality of the search will continue to

improve.

Productionization notes

This system was developed in Python with the gensim package [4], but

to avoid maintaining a microservice in a separate programming

language than our existing Rails application, we migrated the word

vectors into Postgres to use with ActiveRecord. We store the data using

the Postgres “cube” extension [5], which provides us with a high-

dimensional cube data structure as well as performant distance

functions.

Footnotes

[1] Pennington, Je�rey, Richard Socher, and Christopher Manning.

“Glove: Global vectors for word representation.” Proceedings of the 2014

conference on empirical methods in natural language processing

(EMNLP). 2014.

[2] Maaten, Laurens van der, and Geo�rey Hinton. “Visualizing data

using t-SNE.” Journal of Machine Learning Research 9.Nov (2008):

2579–2605.

[3] https://bokeh.pydata.org/en/latest/

[4] https://radimrehurek.com/gensim/

[5] https://www.postgresql.org/docs/9.5/static/cube.html

https://bokeh.pydata.org/en/latest/
https://radimrehurek.com/gensim/
https://www.postgresql.org/docs/9.5/static/cube.html

